I’m working on a .NET question and need support to help me understand better.
Write a C# program to input 10 elements to a one-dimensional array. Search all the ‘0’s
in the array, move them to the end of the array and print the array elements.
I’m working on a .NET question and need support to help me understand better.
Write a C# program to input 10 elements to a one-dimensional array. Search all the ‘0’s
in the array, move them to the end of the array and print the array elements.
In continuation of your project work, discuss the significance of formulating adequate policies and procedures in your organization. Outline the impact of such policies and procedures in your business continuity planning policy. Also, describe the five-step process for building a proper policies for business continuity.
Reading – Chapters 14, 15, and 16 of the following text: Wallace, M., & Webber, L. (2018). The disaster recovery handbook: a step-by-step plan to ensure business continuity and protect vital operations, facilities, and assets. New York, NY: AMACOM. ISBN-13: 978-0814438763
*ROUGH DRAFT and PROJECT TIPS ARE ATTACHED*
Graduation Party Location
It is now time to revisit your graduation planning activities by choosing your location and entertainment for the party. You will do this by creating tables to compare the attributes and issues of your various choices.
Click on the link below, Week 2 Project Tips, for some visual aids on how to tackle this week’s project.
Create a new Microsoft Word document and save it as W2P_LastName.docx. Note that you might want to change your page orientation to landscape to better fit your data.
By the due date assigned, submit your completed document to the Submissions Area. In the Comments box, briefly share your experiences with completing this project.
Length: Minimum of 700 words
Briefly respond to all the following questions. Make sure to explain and backup your responses with facts and examples. This assignment should be in APA format and have to include at least two references.
System architecture is the descriptive representation of the system’s component functions and the communication flows between those components.
My definition immediately raises some important questions.
• What are “components”?
• Which functions are relevant?
• What is a communication flow?
In 300 words
Do a bit of research on penetration testing techniques. Investigate and document the following
Include References, do not copy paste strictly.
All the below three questions need to be without plagiarism and need to user proper references, inline citations, APA formatted and wordcount to be as requested,.
Question 1:
Using a Microsoft Word document, please discuss the case involving the United States of America versus Ross Ulbrecht. Please include what took place at the United States Supreme Court. The minimum word count shall be not less than 500 words
Question 2:
Using a Microsoft Word document, please review ONE of the following films and tell how that film represents a contribution to the field of CyberLaw.
War Games (1983)
Citizen Four (2014)
AlphaGo (2017)
Google and the World Brain (2013)
The minimum word count shall be not less than 1000 words.
Question3:
The minimum word count shall be not less than 250 words.
Questions:
1. Discuss the changes in home health devices over the past 10 years
2. Research a mobile health app of your choice and discuss its potential impact on healthcare
3. Discuss the pros and cons of using electronic communications between providers and patients
I expect 3 pages of fact-based material to answer these questions.
Paper should be APA formatted with citation.
Research paper and ppt on the above topics based on the information technology with APA format
Course – Cloud Computing
all i need is these two files
Create VectorContainer.hpp
Create SelectionSort.hpp
Test SelectionSort.hpp using the VectorContainer.hpp class you made
# Strategy Pattern
In this lab you will create a strategy pattern for sorting a collection of expression trees by their `evaluate()` value, which you will pair with different containers to see how strategies can be paired with different clients through an interface to create an easily extendable system. This lab requires a completed composite pattern from the previous lab, so you should begin by copying your or your partner’s code from the previous assignment into your new repo, making sure it compiles correctly, and running your tests to make sure everything is still functioning correctly.
You will start this lab by creating two expression tree containers: one that uses a vector to hold your trees (class `VectorContainer`) and one that uses a standard list (class `ListContainer`). Each of these container classes should be able to hold any amount of different expressions each of which can be of any size. You will implement them both as subclasses of the following `Container` abstract base class, which has been provided to you in container.h. You should create each one independently, creating tests for them using the google test framework before moving on. Each container should be it’s own commit with a proper commit message. Optionally you can create each one as a branch and merge it in once it has been completed.
class Container {
protected:
Sort* sort_function;
public:
/* Constructors */
Container() : sort_function(nullptr) { };
Container(Sort* function) : sort_function(function) { };
/* Non Virtual Functions */
void set_sort_function(Sort* sort_function); // set the type of sorting algorithm
/* Pure Virtual Functions */
// push the top pointer of the tree into container
virtual void add_element(Base* element) = 0;
// iterate through trees and output the expressions (use stringify())
virtual void print() = 0;
// calls on the previously set sorting-algorithm. Checks if sort_function is not
// null, throw exception if otherwise
virtual void sort() = 0;
/* Functions Needed to Sort */
//switch tree locations
virtual void swap(int i, int j) = 0;
// get top ptr of tree at index i
virtual Base* at(int i) = 0;
// return container size
virtual int size() = 0;
};
Notice that our Container abstract base class does not have any actual STL containers because it leaves the implementation details of the container to the subclasses. You **must use the homogeneous interface above for your sort functions, and you are only allowed to manipulate the containers through this interface, not directly**. This will allow you to extend and change the underlying functionality without having to change anything that interfaces with it.
## Sorting Classes
In addition to the containers you will also create two sort functions capable of sorting your containers, one that uses the [selection sort](https://www.mathbits.com/MathBits/CompSci/Arrays/Selection.htm) algorithm and one that uses the [bubble sort](https://www.mathbits.com/MathBits/CompSci/Arrays/Bubble.htm) algorithm (you may adapt this code when writing your sort functions). They should both be implemented as subclasses of the `Sort` base class below which has been provided. You should create each one independently, creating tests for them using the google test framework before moving on. Each sort class should be it’s own commit with it’s own proper commit message. When creating tests for these sort classes, make sure you test them with each of the containers you developed previously, and with a number of different expression trees.
“`c++
class Sort {
public:
/* Constructors */
Sort();
/* Pure Virtual Functions */
virtual void sort(Container* container) = 0;
};
sort.hpp
#ifndef _SORT_HPP_
#define _SORT_HPP_
#include “container.hpp”
class Container;
class Sort {
public:
/* Constructors */
Sort();
/* Pure Virtual Functions */
virtual void sort(Container* container) = 0;
};
#endif //_SORT_HPP_
base.hpp
#ifndef _BASE_HPP_
#define _BASE_HPP_
#include
class Base {
public:
/* Constructors */
Base() { };
/* Pure Virtual Functions */
virtual double evaluate() = 0;
virtual std::string stringify() = 0;
};
#endif //_BASE_HPP_
container.hpp
#ifndef _CONTAINER_HPP_
#define _CONTAINER_HPP_
#include “sort.hpp”
#include “base.hpp”
class Sort;
class Base;
class Container {
protected:
Sort* sort_function;
public:
/* Constructors */
Container() : sort_function(nullptr) { };
Container(Sort* function) : sort_function(function) { };
/* Non Virtual Functions */
void set_sort_function(Sort* sort_function); // set the type of sorting algorithm
/* Pure Virtual Functions */
// push the top pointer of the tree into container
virtual void add_element(Base* element) = 0;
// iterate through trees and output the expressions (use stringify())
virtual void print() = 0;
// calls on the previously set sorting-algorithm. Checks if sort_function is not null, throw exception if otherwise
virtual void sort() = 0;
/* Essentially the only functions needed to sort */
//switch tree locations
virtual void swap(int i, int j) = 0;
// get top ptr of tree at index i
virtual Base* at(int i) = 0;
// return container size
virtual int size() = 0;
};
#endif //_CONTAINER_HPP_
Example
#ifndef _LISTCONTAINER_HPP_
#define _LISTCONTAINER_HPP_
#include “container.hpp”
#include
#include
#include
class Sort;
class ListContainer: public Container{
public:
std::list
//Container() : sort_function(nullptr){};
//Container(Sort* function) : sort_Function(function){};
//void set_sort_funtion(Sort* sort_function){
// this -> sort_function = sort_function;
//}
void add_element(Base* element){
baseList.push_back(element);
}
void print(){
for(std::list
if(i == baseList.begin()){
std::cout <<(*i) -> stringify();
}
else{
std::cout << ", " << (*i) -> stringify();
}
}
std::cout << std::endl;
}
void sort(){
try{
if(sort_function != nullptr){
sort_function -> sort(this);
}
else{
throw std::logic_error(“invalid sort_function”);
}
}
catch(std::exception &exp){
std::cout << "ERROR : " << exp.what() << "n";
}
}
//sorting functions
void swap(int i, int j){
std::list
for(int f = 0; f < i; f++){
first++;
}
Base* temp = *first;
std::list
for(int s = 0; s < j; s++){
second++;
}
*first = *second;
*second = temp;
}
Base* at(int i){
std::list
for(int a = 0; a < i; a++){
x++;
}
return *x;
}
int size(){
return baseList.size();
}
};
#endif //_LISTCONTAINER_HPP_
bubblesort.hpp
#ifndef __BUBBLESORT_HPP__
#define __BUBBLESORT_HPP__
#include "sort.hpp"
#include "container.hpp"
class BubbleSort: public Sort{
public:
void sort(Container* container){
memContainer = container;
int flag = 1;
int numLength = memContainer->size();
for(int i = 1; (i <= numLength) && (flag == 1); i++){
flag = 0;
for(int j = 0; j < (numLength - 1); j++){
if(memContainer->at(j+1)->evaluate() < memContainer->at(j)->evaluate()){
memContainer->swap(j+1, j);
flag = 1;
}
}
}
}
};
#endif // __BUBBLESORT_HPP__