Decrypt the following ciphertext that is encrypted using RSA:
5433065902986267632605533071412313607849042001231487725752160944543337634764776942780551811154931702225666567112761402854245945771790200374756020087742730448029511549378258035341909089954945069377423917666095579241594583655805469852654975413725915810650231239021446353034249591165382217733674640
RSA public key (N, e):
N =
9443933355875323479428701223436866003317020345062337184168866482442741746051755875714077225424938697068202237079691276886895796347334130227954217861122456746475811995655599937678751969288324093545863325957721247606698180886906068377558846502707583137394885329858060292972366775543495590847656457
e = 65537
Hint.
• A modulus N of the standard RSA consists of only the two large prime p and q.
• But the modulus N in this assignment consists of many primes, which may weaken the security of RSA (so making this assignment practicable).
• Students can use the following website for integer factorization: https://www.alpertron.com.ar/ECM.HTM
• Refer to the provided example code (example.py).